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The evolution of costly cooperation between selfish individuals seems to contradict Darwinian selection, as
it reduces the fitness of a cooperating individual. However, several mechanisms such as repeated interactions
or spatial structure can lead to the evolution of cooperation. One such mechanism for the evolution of coop-
eration, in particular among humans, is indirect reciprocity, in which individuals base their decision to coop-
erate on the reputation of the potential receiver, which has been established in previous interactions. Coopera-
tion can evolve in these systems if individuals preferably cooperate with those that have shown to be
cooperative in the past. We analyze the impact of fake reputations or fraud on the dynamics of reputation and
on the success of the reputation system itself, using a mean-field description for evolutionary games given by
the replicator equation. This allows us to classify the qualitative dynamics of our model analytically. Our
results show that cooperation based on indirect reciprocity is robust with respect to fake reputations and can
even be enhanced by them. We conclude that fraud per se does not necessarily have a detrimental effect on
social systems.
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I. INTRODUCTION

Evolution is a constant struggle for survival. Individuals
compete continuously. Natural selection implies that indi-
viduals should not support others at a cost to themselves.
Thus, it is surprising that individuals are often willing to
forgo some of their reproductive potential and support others
instead. While such an action reduces fitness in the short run,
it might increase the survival chances in the long run. This
phenomenon has been explained in terms of mechanisms for
the evolution of cooperation, which include kin selection
�1,2�, group selection �3–5�, network reciprocity �6–16�, di-
rect reciprocity �17–19�, and indirect reciprocity �20–28�; see
�29� for a recent review. Among humans, a particularly in-
teresting mechanism is indirect reciprocity, which “presum-
ably may distinguish us humans from all other living species
on earth” �30�.

Here, we model indirect reciprocity, where cooperation is
based on a status or reputation that individuals obtained in
previous interactions. Indirect reciprocity is frequently ap-
plied to improve trade on online platforms �31–33�. Recently,
it has been shown that it is also a potential mechanism that
can help to address such global cooperation problems as cli-
mate preservation �34�. Theoretical work on reputation sys-
tems has considered the influence of unintended errors
�27,28�: A “trembling hand” can lead to the wrong action and
a “fuzzy mind” might lead to a wrong assessment and hence
a wrong reputation. However, a possible manipulation of
reputation by the players is usually not taken into account.
Furthermore, these models do not involve any time delays
and typically assume that an action is immediately assessed
�20,35�. In reality, this is not always the case: We discover
that we have been ripped off when it is too late, read the fine
print of a contract when we have already signed, or discover
that public funds are missing when it is not longer possible to
backtrack the scammers. Although their behavior is “bad,”

these scammers can maintain a “good” reputation for some
time. Indeed, in human social systems generally a small frac-
tion of people exist who break the rules for their own advan-
tage and are sanctioned by the community �36�. As this kind
of “fraud” is fake cooperation, it is different from public
defection and also the effect of punishing this action can
deviate from the conventional ones �37,38�. So far, it is un-
clear why sanctions by the community have not eliminated
fraud from social systems. Also the impact of fraud on the
evolution of cooperation has not been analyzed yet. We ad-
dress these questions by extending the image scoring frame-
work described by Nowak and Sigmund �20�. Image scoring
is a particular simple moral system assigning a reputation to
an action and determining the choice of an action based on
such reputation. As image scoring bases reputation only on
actions and is independent of previous reputations, it is es-
pecially robust if information on previous encounters is not
reliable. Theoreticians have criticized this framework, as
more sophisticated moral systems avoid the problem that a
good individual who refuses to cooperate with a bad indi-
vidual immediately becomes bad �36,39,40�. Moreover, im-
age scoring is not evolutionarily stable and does not belong
to the “leading eight” moral systems of Ohtsuki and Iwasa,
who analyzed 4096 moral systems and identified the eight
most cooperative of them �21�. However, behavioral experi-
ments have shown that image scoring is a plausible mecha-
nism for cooperation among humans and is preferred under
many circumstances over more sophisticated moral systems
�41–43�. It also requires only minimal information. Thus,
image scoring seems to be a reasonable starting point to ad-
dress the problem of fraud. We base our model on the repli-
cator equation, which provides a mean-field description of
the dynamics of game-theoretic systems �44,45�. This allows
us to classify the different dynamical regimes of the system
analytically.
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II. THE MODEL

Here, we first recall the image scoring framework and
discuss the intuitive meaning of the parameters. The detailed
mathematical implementation of the process is described in
Secs. II A and II B. In the image scoring framework, two
individuals are chosen at random, one as a potential donor
and one as a recipient. The donor has the possibility to pay
the cost c to support the recipient, who then obtains the ben-
efit b�c. A pair of individuals only meets once. Therefore,
the donor does not expect a return from the recipient himself,
but hopes that through establishing a good reputation, the
cost for his cooperation will be compensated by the benefit
from an altruistic act of someone else in future encounters.
We assume that the donor does not support the recipient
directly, but invests in a public good and allows the recipient
to take advantage of this good. Discriminators aim to im-
prove their payoff by investing the cost c in their reputation
and thus attract help from others, because the reputation,
which is initially good for all individuals, only stays good if
they help others and keep public confidence in this way. If
they deny help, their reputation becomes bad. Defectors
avoid the risk of investments in their reputation and do not
support others. Thus, their good reputation from the begin-
ning of each round remains good only until they are chosen
as potential donors and deny help. Whereas in the short run
nondonors yield the higher payoff by saving the costs for
cooperation, in the long run cooperators increase the chance
of obtaining a benefit based on their good reputation, and
cooperation might thus yield the higher payoff.

This reputation-based cooperation can be exploited by
“scammers” who manipulate their own reputation �23�, espe-
cially if these do not need to fear imminent punishment.
Therefore, we introduce an additional strategy, namely,
fraud. Scammers only pretend to invest in the public good
and encourage others to use the common good. While this
allows them to maintain a good reputation, it undermines the
system in the long run, since the common resource is over-
used. In reality, this can happen if transfers are made via
anonymous public funds, if checks bounce, or if credit cards
are misused. If the society is unable to detect and prevent
such fraud, it will quickly spread and destroy the system.
However, if there is a certain probability � �0���1� that
fraud is discovered, the situation becomes more interesting.
For �=0, fraud is never discovered and will spread in the
population. For �=1, reputation can never be faked success-
fully. Whenever a scammer is discovered, he has to pay a
penalty proportional to the number of potential donors, ��x
+z�, but does not change his behavior. The constant � can
take any real value, but it seems to be reasonable that it is of
the same order of magnitude as the benefit from cooperation,
b. This leads to a new kind of dynamics between discrimi-
nators, defectors, and scammers. We follow Nowak and Sig-
mund �20� and model the dynamics with two different stages.
On a fast time scale of interactions, reputations change and
payoffs are accumulated. It is assumed that the information
on the new reputation is available to all individuals before
the next round occurs. On a slower time scale, the differ-
ences between the accumulated payoffs leads to a change of
strategies. In this process, the numbers of discriminators, de-
fectors, and scammers change.

A. Change of reputation and payoff accumulation

We consider three different types of individuals: discrimi-
nators, defectors, and scammers. All three types can have
good or bad reputation �or image score�. At the beginning of
each generation, the image score is set to good for all indi-
viduals. Individuals interact for several rounds. The fre-
quency of players with bad and good reputations, i.e., image
score i=0,1, is denoted as xi �discriminators�, yi �uncondi-
tional defectors�, and zi �scammers�.

The frequency of individuals with image scores 0 or 1
changes from round to round, since a donation can change
the reputation. An upper index denotes the round; e.g., x1

2 is
the frequency of discriminators with a good reputation in
round 2. In the first round, all individuals have image score
1. Thus, the initial condition of each generation is given by
x0

1=y0
1=z0

1=0. The frequencies x1
1, y1

1, and z1
1 �which sum up

to 1� reflect the composition of the population. This compo-
sition changes based on the success of the strategies on a
slower time scale �see below�. In round 1, individuals obtain
payoffs based on the initial reputation, which is always posi-
tive. Consequently, the reputation in round j depends on the
actions in round j−1. Thus, actions in round j determine the
future payoff obtained in round j+1.

For example, consider a discriminator with a good repu-
tation. If he is chosen as a potential donor �which happens
with probability 1 /2�, his image score changes. If he is
paired with an individual in good reputation, he cooperates
and his reputation remains good. If he is paired with an in-
dividual in bad reputation, he does not cooperate. Then, his
reputation becomes bad. The frequency of discriminators
with a good reputation decreases due to this process from
round j to round j+1. However, it increases when discrimi-
nators with a bad reputation cooperate again with others.
Thus, x1 changes from round j to round j+1 as

x1
j+1 = x1

j + �x0
j � j − x1

j �1 − � j��/2. �1�

Here � j =x1
j +y1

j +z1
j +z0

j is the fraction of all players who ob-
tain help in round j. In an equivalent similar way, we obtain

x0
j+1 = x0

j + �x1
j �1 − � j� − x0

j � j�/2,

y0
j+1 = y0

j + y1
j /2, y1

j+1 = y1
j − y1

j /2,

z0
j+1 = z0

j + �z1
j �1 − � j� − z0

j � j�/2,

z1
j+1 = z1

j + �z0
j � j − z1

j �1 − � j��/2. �2�

The total numbers of discriminators x=x0
j +x1

j remains con-
stant during a generation. Equivalently, also y=y0

j +y1
j and

z=z0
j +z1

j remain constant. Note that the real reputation of
scammers changes despite the fact that their fake reputation
is always good. We note that the reputation dynamics de-
pends only on the fraction of players with different reputa-
tion and strategies. It is independent of the parameters of the
underlying game, i.e., the cost c, the benefit b, the penalty �,
and the detection probability �.
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Based on the fractions of players in good and in bad repu-
tation, we now calculate the average payoffs PC, PD, and PS
of cooperative discriminators, defectors, and scammers, re-
spectively. We denote the payoff of a discriminator with
good reputation as PC,1 and the payoff of a discriminator
with bad reputation as PC,0. Equivalent notation is used for
defectors and scammers. When an individual is chosen as a
donor �which happens with probability 1 /2� and cooperates,
then the cost of cooperation c is subtracted from its payoff.
For example, a discriminator with a bad reputation cooper-
ates with probability � j in round j. Thus, its payoff changes
on average by −c� j /2 in that round. Cooperation leads to the
benefit b. For example, an unconditional defector in good
reputation increases his payoff by b whenever he interacts
with a cooperator or a scammer and is chosen as a recipient.
Thus, its payoff changes by +b�x+z� /2. For scammers, we
have to distinguish two cases. With probability 1−�, they are
viewed as individuals with a good reputation, but never pay
the cost for cooperation. With probability �, they are pun-
ished for their fraud. The average payoffs for all players
obtained in round j are

PC,0
j = − � jc/2,

PC,1
j = �− � jc + b�x + z��/2,

PD,0
j = 0, PD,1

j = b�x + z�/2,

PS,0
j = PS,1

j = �1 − ��b�x + z�/2 − ���x + z�/2, �3�

where c is the cost, b the benefit, � the detection probability,
and � the penalty for fraud. Figure 1 shows examples of the
dynamics of reputations and payoffs during a generation.

Equations �1� and �2� indicate that there are always some
players of a certain strategy that are in good reputation and
others that are in bad reputation. The success of a strategy
depends on the accumulated payoffs averaged over these two
reputations. After n rounds, discriminators have accumulated
the average payoff

PC = �
j=1

n
PC,0

j x0
j + PC,1

j x1
j

x0
j + x1

j . �4�

The sums for defectors and scammers simplify to closed ana-
lytical expressions; defectors accumulate the payoff

PD = �
j=1

n
PD,0

j y0
j + PD,1

j y1
j

y0
j + y1

j = b�x + z��1 − 2−n� �5�

and scammers obtain

PS = �
j=1

n
PS,0

j z0
j + PS,1

j z1
j

z0
j + z1

j =
�1 − ��b − ��

2
�x + z�n . �6�

For n=0, no interactions take place and all payoffs are zero.
For a single interaction, n=1, defectors have always the
highest payoff among the three strategies. Discriminators pay
the cost of cooperation, but cannot take advantage of their

reputation. Scammers avoid paying the cost, but with prob-
ability � they are discovered and have to pay the punishment
�. Thus defectors are more successful than scammers and
fraud does not pay for a single interaction �cf. Fig. 1�.
Whether scammers or discriminators obtain a higher payoff
depends on the parameters and on the initial condition. From
PC�PS we obtain with n=1 the condition ��x+z��c / �b
+��. In this case, discriminators are more successful than
scammers. For n�2, the dynamics becomes more complex.

Based on these accumulated payoffs for the short-term
dynamics, we can now address the long-term dynamics that
changes the fraction of discriminators, defectors, and scam-
mers.

B. Change of strategies

The average payoffs that are accumulated over n rounds
determine how successful a strategy is. As usual in evolu-
tionary game theory, we equate payoff and fitness and play-
ers produce offspring proportional to their payoff. Note that
each strategy consists of players with good reputation and of
players with bad reputation. The accumulated payoffs con-
sidered here are the averages over the two reputations. We
use the replicator dynamics to identify strategies that are suc-
cessful in the long run based on their payoffs �45�. There are
different microscopic processes that lead to slightly different
differential equations �46–49�. As they do not change the
stability of fixed points, we do not have to consider these
alternative descriptions here. In the replicator equation, the
fraction of the three strategies changes as

ẋ = x�PC − �P�� ,

ẏ = y�PD − �P�� ,

ż = z�PS − �P�� , �7�

where �P�=xPC+yPD+zPS is the average payoff in the
population. The replicator dynamics does not change the nor-
malization, x+y+z=1. Due to the way that payoffs are cal-
culated in Eqs. �3�–�5�, the system is highly nonlinear. Note
that the payoffs and hence the dynamics depends for a given
initial condition on the number of rounds n, the cost c, the
benefit b, the punishment �, and the detection probability �.

III. RESULTS

The global dynamics of the system is qualitatively deter-
mined by the dynamics between two strategies. As a starting
point for our analysis, we assume that the detection probabil-
ity � is independent of the number of scammers.

A. Constant detection probability

First, we consider the case of discriminators and scam-
mers only. In this case, there are no individuals that do not
receive help, �=x1+z=1. Hence, we have PC=PS for detec-
tion probability
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�1 =
c

b + �
, �8�

independent of n. An � larger than �1 leads to a drift toward
discriminators, a smaller � to a drift toward scammers. How-
ever, a society dominated by scammers is not possible, as
this would produce benefits at no costs. Hence, reputation
loses its meaning before fraud takes over. In reality, there are
additional constraints, e.g., a maximum fraction of scam-
mers. In order to tackle fraud, one should aim for a low cost
to benefit ratio c /b and a high penalty to benefit ratio � /b if
it is not possible to increase the detection probability �.

Without discriminators, x=0, the critical detection prob-
ability can be computed from PD=PS, which yields

�2 =
b

b + �
�1 −

2

n
+

21−n

n
	 . �9�

For ���2, defectors are better off than scammers in the
absence of discriminators and fraud vanishes ultimately as
illustrated in Fig. 2�b�. Note that, for large n, the ratio �1 /�2
reduces to the cost to benefit ratio of cooperation c /b, which
appears to be a crucial parameter for all mechanisms of co-
operation �29�.

The dynamics between discriminators and defectors de-
pends only on the cost to benefit ratio and on the number of
rounds in which the reputation of individuals changes
�20,50�. If the number of rounds is sufficiently high, the dy-
namics is bistable. The position of the unstable equilibrium is
given by the numerical solution of PC=PD.

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n

1 5 10 15 20

Rounds

0.0

0.5
1.0

1.5

2.0

P
ay

of
f

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n

1 5 10 15 20
0.0

0.5
1.0

1.5

2.0

P
ay

of
f

1 5 10 15 20
0.0

0.5
1.0

1.5

2.0

P
ay

of
f

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n

1 5 10 15 20

Rounds

0.0

0.5
1.0

1.5

2.0
P

ay
of

f

a

c

b

d

D

C
D

C

S

D

C SD

C S

C

D

C

S

D

C
S

D

S
C

D

C

D

D

C

D

D

FIG. 1. �Color online� Time evolution of reputation and payoffs for the three different types �discriminating cooperators C with fraction
x, defectors D with fraction y, scammers S with fraction z� for four different initial conditions. Initially, all individuals are in good reputation.
Full lines show the dynamics of the fraction of individuals with good reputation, dashed lines show the fraction of individuals with bad
reputation. �a� Without scammers, the reputation of both discriminating cooperators and defectors becomes bad after a few rounds. If the
number of rounds is high enough, the accumulated payoff of discriminators becomes higher, which would in the long-term dynamics lead to
an increase of their fraction �initial condition x=0.5, y=0.5�. �b� Dynamics starting from a symmetric mixture of all three strategies, x=y
=z=1/3. Because of the same initial values for discriminators and scammers, both have the same distribution, but different payoffs �cf. Eq.
�2��. Here, the payoff of discriminators is highest for more than four rounds, which leads to an initial increase of the fraction of discrimi-
nators in the replicator dynamics. �c� Starting from x=0.5, y=0.25, and z=0.25, the number of discriminators and defectors with bad
reputation reaches x0

�=0.25 in the long run. Cooperators again obtain the highest payoff if the number of rounds is sufficiently high. �d� If
the initial condition is x=0.25, y=0.5, and z=0.25, the number of rounds determines the winning strategy: For only one round, defectors are
most successful. If the number of rounds n satisfies 1	n	8, then cooperators are most successful. Finally, scammers have the highest
payoff for n�8 �in all panels, the parameter values are �=0.38, b=1.0, c=0.4, �=1.0�.
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Let us now return to the full dynamics of all three strate-
gies �see Fig. 2�. As described above, for �	�1, scammers
dominate the system. For ���2, scammers have no influ-
ence on the dynamics. The replicator dynamics of the system
has two stable fixed points, unconditional defection and dis-
criminating cooperation. A very different situation is ob-
served for intermediate detection probability �1	�	�2
�Fig. 2�c��. The size of this region increases with the number
of rounds n, since �2 is an increasing function of n. For large
n, it is given by �2−�1
�b−c� / �b+�� and increases with
larger b−c, but decreases with larger b+�.

Qualitatively, the situation is the same for all parameters
within this region: While discriminators prevail compared to
scammers, the scammers can still outperform defectors. The
fixed point of unconditional defection is unstable and the
dynamics leads to scammers. Errors on the trajectory toward
scammer dominance will inevitably lead to the revival of
discriminating cooperators. Similar, mutations in the strate-
gies or stochasticity arising from a finite population size can
also lead from the very narrow path from defectors toward
scammers �cf. Fig. 2� into the basin of attraction of discrimi-
nators. These will finally take over the system and cannot be
outperformed by the other two strategies. Hence, fraud has a

counterintuitive positive effect on the evolution of coopera-
tion, as it considerably enlarges the basin of attraction of
discriminators and destabilizes the situation in which only
defectors are present. Interestingly, when few scammers are
present, discriminators benefit from this when competing
with defectors, as their basin of attraction is increased.

To demonstrate the positive effect of scammers and the
increase of the �1	�	�2 region with decreasing cost of
cooperation c, we have numerically calculated the basin of
attraction �see Fig. 3� for three different costs of cooperation.
The numerical results are in very good accordance with the
analytical results. For high � the proportion of discriminators
and defectors are determinined by the ratio c /b. For c=0.5
and �	�2, the discriminators can even have a larger basin

Discriminators Defectors

Scammers

(c)

(a) (b)

α=0.2 α=0.4

α=0.3

FIG. 2. �Color online� Simplices representing the evolutionary
dynamics of the discriminator, defector, and scammer strategies for
different detection probabilities �. Each point in the given area is
colored depending on the fixed point of the dynamic. The corners
represent the pure strategies. The sides represent competition be-
tween two strategies. For all diagrams the same parameter values
are taken except for the probability � that a scammer is detected. �a�
If the probability that a scammer is detected is below �1=0.25,
scammers can take over the population ��=0.2�. Discriminators and
defectors survive only if no scammers are initially present. �b� For
���2
0.336, scammers go extinct since they are discovered too
frequently. Depending on the initial condition, cooperators or defec-
tors prevail ��=0.4�. �c� For intermediate detection probabilities,
�1	�	�2, the dynamics leads from defectors to scammers, but
from scammers to discriminators ��=0.3�. The basin of attraction
of the discriminators is significantly larger than in situations with
high � �b=1.0, �=1.0, c=0.5, n=6, blue �dark gray� are discrimi-
nators, red �medium gray� are defectors, green �light gray� are
scammers�.
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FIG. 3. �Color online� Size of the basin of attraction �cf. Fig. 2�
of the different stable fixed points in dependence on the detection
probability �. As in Fig. 1, C denotes cooperating discriminators, D
unconditional defectors, and S scammers. �a� In a system with high
cost �c=0.5�, scammers dominate the system for �	�1=0.25. For
�1	�	�2=0.336, the basin of attraction of discriminators is
greatly enlarged, but scammers still dominate over defectors. If �
��2, then defectors and discriminators dominate. Compared to the
analytical result for the situation without any scammers �horizontal
dashed lines�, discriminators have a larger basin of attraction. �b�
For smaller costs of cooperation, c=0.35, the value of �1 is reduced
to 0.175, whereas �2 remains constant. Without scammers, dis-
criminators have a larger basin of attraction than defectors, but in
our case it is further enlarged due to the initial presence of scam-
mers. �c� If we decrease the cost to c=0.2, the value of �1 is re-
duced to 0.1. In all three panels, each data point is an average over
105 initial conditions. For each initial condition, we solved the rep-
licator equations �6� numerically using a Euler discretization with

t=0.01. After T=105 time steps, we determined the strategy with
the highest abundance. The small peaks of the scammer curve in �a�
and �b� for values of ���2 indicate a very slow dynamics, in
which the trajectory is after T time steps still close to the unstable
scammer fixed point. For 
t→0 and T→�, no scammers are
present for ���2 �in all panels, the parameter values are b=1.0,
�=1.0, n=6 rounds�.
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than defectors, in contrast to the situation without scammers.
For small c, discriminators are advantageous compared to
defectors in the absence of scammers. Nonetheless, in the
presence of scammers their basin of attraction increases.

For n=3 rounds, one can analytically show that fraud en-
hances cooperation. In a system without fraud, z=0, and n
=3 rounds, there is an unstable fixed point x* for the dynam-
ics between discriminators and defectors if 0	5c	12b
given by

x* = − 2 +
�4b2 − bc − 3c2

b − c
. �10�

If we add a small fraction of scammers near this fixed point,
we can ask whether the difference between discriminator and
defector payoff becomes positive or negative. For z�1, we
find

PC − PD 
 �2b − c

8
x* +

4b − 5c

8
	z � 0. �11�

Since this payoff difference is always positive for c	b, dis-
criminators are always better off when few scammers are
present compared to situations without scammers. For n=2.
the reasoning is similar: For 0	4c	b, the unstable fixed
point is given by x*=3c / �b−c�. For small z we find near the
fixed point PC−PD
�b−c�z /4, which is positive if c	b.
Thus, for n=2 and n=3 the basin of attraction of discrimi-
nators grows due to the presence of scammers, regardless of
which strategy ultimately prevails.

B. Adaptive detection probability

The analysis in the previous paragraph is a necessary pre-
requisite to tackle the more realistic case in which the prob-
ability to detect scammers increases with their presence. If
only a small fraction of the population steals from public
funds, this is unlikely to have a detrimental effect on the
system and will not be detected. However, if this fraction
grows to larger values, such fraud endangers the common
enterprise and the detection probability grows. The simplest
approach to such a dynamic detection rate is to make it pro-
portional to the number of scammers, i.e., �=�z. In this way,
it is hard to detect a small number of scammers, while it
becomes significantly easier to detect them if their number
increases. With this extension, the fixed points at the pure
strategies are destabilized �see Fig. 4�. The ultimate outcome
of the dynamics is given by stable fixed points where a cer-
tain fraction of scammers is present. If discriminators and
scammers coexist this fraction is given by �1 /� �see Eq. �8��.
If defectors and scammers coexist, it is given by �2 /� �see
Eq. �9��.

However, we do not have to restrict ourselves to a linear
function for the detection probability: Our results hold for
any strictly increasing function f�z�. A steeper increase leads
to a smaller fraction of scammers, which is given by the
solution of f�z�=�1 �absence of defectors� or f�z�=�2 �ab-
sence of discriminators�. Thus, the stable fixed points of the
system can be calculated analytically for any strictly increas-
ing function f�z�. Besides the three trivial unstable fixed

points at x=1, y=1, and z=1, the system also has two non-
trivial unstable equilibria. The fixed point between discrimi-
nators and defectors has been calculated from PC=PD in Eq.
�9� for the special case of n=3. In general, it can only be
determined numerically. The fixed point in the interior that
appears only for adaptive detection probability has to be de-
termined numerically from PC=PD=PS for a given set of
parameters.

IV. DISCUSSION

Here, we have introduced a framework for reputation
mechanisms that takes into account fake reputations. Many
social, political, and economical systems show characteris-
tics that emerge from differences in real and fake reputations.
For example, think of political scandals where individuals
act at the expense of the community, not paying any costs
until they are detected or, in the worst case, the system
breaks down. This living at the expense of others is typically
feasible during a limited amount of time only. The simplicity
of our model allows a future comparison with behavioral
experiments, which have successfully corroborated several
theoretical results in game theory �41–43,51�. By concentrat-
ing on the mean-field dynamics of the system, we are able to
obtain an analytical classification of the dynamics of the sys-
tem.

In a finite population, stochastic effects would change this
prediction. Without errors or mutations that lead to strategies
that are not present, the system will ultimately reach one of
the corners of the simplex. For small error rates, the new
strategy is lost again or adapted by the whole population

Discriminators Defectors

Scammers

FIG. 4. �Color online� Dynamics between discriminators, defec-
tors, and scammers with a scammer detection probability � propor-
tional to their abundance z in the system ��z�=�z. Since scammers
are very successful when their abundance is low, situations without
scammers become unstable. However, since high abundance of
scammers implicates a high detection probability, the fixed point
with scammers only is destabilized. Depending on the initial con-
dition, the system ends up in one of two fixed points. �i� For a
coexistence of discriminators and scammers, the fraction of scam-
mers is given by �1 /�=0.3. �ii� For coexistence of defectors and
scammers, the fraction of the latter is given by �2 /�=0.358 �b
=1.0, c=0.5, �=1.0, n=7, �=1�.
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before a second error arises �52–54�. Thus, the stationary
distribution is determined by the transition rates between the
corners of the simplex. In this case, one would expect that
discriminators dominate. However, this analytical approach
involves at least a temporary dominance of scammers, which
might not be feasible in real systems. For higher error rates,
errors in the scammer corner of the simplex or on the trajec-
tories from defectors to scammers in the parameter region
�1	�	�2 will lead into the basin of attraction of discrimi-
nators. Even with high error rates, the system will spend
most of the time in the adjacency of the discriminator corner.
Thus, the possibility of faking image scores together with a
small probability for errors can lead to cooperation based on
reputation in this system. A possible extension of this model
is to consider interactions on social networks. However, only
the simplest cases of fixed �6–14,55–62� or evolving net-
works �63–68� allow tackling these problems analytically. In
our case, additional complications occur due to the nonlin-
earity in the calculation of payoffs, which makes most ana-
lytical approaches unfeasible.

In conclusion, our results show that in indirect reciprocity
discriminators might benefit from coexistent scammers that

fake their reputation, depending on their detection probabil-
ity and on the cost to benefit ratio. If scammers dominate
over defectors, they can help discriminators to initiate coop-
eration, as the presence of scammers allows discriminators to
obtain a good reputation. Once defectors are rare, scammers
are displaced by discriminators. When the probability to de-
tect scammers vanishes with the fraction of scammers, a cer-
tain amount of fraud is always found in the system. Thus, a
limited presence of scammers in the population can increase
cooperative behavior. Complex cooperative systems become
vulnerable to self-interested scammers when a critical num-
ber is exceeded or if they cannot be detected at low abun-
dance. This could explain why evolution did not eliminate
fraud from social systems.

ACKNOWLEDGMENTS

We thank J. C. Claussen for many insightful discussions
and comments on this manuscript. A.T. acknowledges sup-
port by the “Deutsche Akademie der Naturforscher Le-
opoldina” �Grant No. BMBF-LPD 9901/8-134�.

�1� W. D. Hamilton, Am. Nat. 97, 354 �1963�.
�2� S. A. Frank, Foundations of Social Evolution �Princeton Uni-

versity Press, Princeton, 1998�.
�3� J. Maynard Smith, Q. Rev. Biol. 51, 277 �1976�.
�4� D. S. Wilson, Proc. Natl. Acad. Sci. U.S.A. 72, 143 �1975�.
�5� A. Traulsen and M. A. Nowak, Proc. Natl. Acad. Sci. U.S.A.

103, 10952 �2006�.
�6� M. A. Nowak and R. M. May, Nature �London� 359, 826

�1992�.
�7� A. V. M. Herz, J. Theor. Biol. 169, 65 �1994�.
�8� K. Lindgren and M. G. Nordahl, Physica D 75, 292 �1994�.
�9� G. Szabó and C. Tőke, Phys. Rev. E 58, 69 �1998�.

�10� F. Schweitzer, L. Behera, and H. Mühlenbein, Adv. Complex
Syst. 5, 269 �2002�.

�11� G. Szabó and C. Hauert, Phys. Rev. Lett. 89, 118101 �2002�.
�12� F. C. Santos, J. F. Rodrigues, and J. M. Pacheco, Phys. Rev. E

72, 056128 �2005�.
�13� F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104

�2005�.
�14� H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, Na-

ture �London� 441, 502 �2006�.
�15� M. Perc, New J. Phys. 8, 22 �2006�.
�16� G. Szabó and G. Fáth, Phys. Rep. 446, 97 �2007�.
�17� R. L. Trivers, Q. Rev. Biol. 46, 35 �1971�.
�18� R. Axelrod and W. D. Hamilton, Science 211, 1390 �1981�.
�19� C. Hauert and H. G. Schuster, Proc. R. Soc. London, Ser. B

264, 513 �1997�.
�20� M. A. Nowak and K. Sigmund, Nature �London� 393, 573

�1998�.
�21� H. Ohtsuki and Y. Iwasa, J. Theor. Biol. 231, 107 �2004�.
�22� H. Brandt and K. Sigmund, J. Theor. Biol. 231, 475 �2004�.
�23� H. Brandt and K. Sigmund, Proc. Natl. Acad. Sci. U.S.A. 102,

2666 �2005�.

�24� M. A. Nowak and K. Sigmund, Nature �London� 437, 1291
�2005�.

�25� F. A. C. C. Chalub, F. C. Santos, and J. M. Pacheco, J. Theor.
Biol. 241, 233 �2006�.

�26� J. M. Pacheco, F. C. Santors, and F. A. C. C. Chalub, PLOS
Comput. Biol. 2, 1634 �2006�.

�27� H. Brandt and K. Sigmund, J. Theor. Biol. 239, 183 �2006�.
�28� H. Ohtsuki and Y. Iwasa, J. Theor. Biol. 239, 435 �2006�.
�29� M. A. Nowak, Science 314, 1560 �2006�.
�30� R. Alexander, The Biology of Moral Systems �de Gruyter, New

York, 1987�.
�31� G. Bolton, E. Katok, and A. Ockenfels, Manage. Sci. 50, 1587

�2004�.
�32� C. Dellarocas, MIT Sloan School of Management working pa-

per, 4297 �2003�.
�33� T. Pfeiffer and M. A. Nowak, Curr. Biol. 16, R946 �2006�.
�34� M. Milinski, D. Semmann, H. J. Krambeck, and J. Marotzke,

Proc. Natl. Acad. Sci. U.S.A. 103, 3994 �2006�.
�35� H. G. Schuster, Complex Adaptive Systems �Scator, Saar-

brücken, 2002�.
�36� A. Lotem, M. A. Fishman, and L. Stone, Nature �London� 400,

226 �1999�.
�37� E. Fehr and S. Gächter, Nature �London� 415, 137 �2002�.
�38� K. Panchanathan and R. Boyd, Nature �London� 432, 499

�2004�.
�39� O. Leimar and P. Hammerstein, Proc. R. Soc. London, Ser. B

268, 745 �2001�.
�40� K. Panchanathan and R. Boyd, J. Theor. Biol. 224, 115 �2003�.
�41� C. Wedekind and M. Milinski, Science 288, 850 �2000�.
�42� M. Milinski, D. Semmann, T. C. Bakker, and H. J. Krambeck,

Proc. R. Soc. London, Ser. B 268, 2495 �2001�.
�43� M. Milinski, D. Semmann, and H. J. Krambeck, Nature �Lon-

don� 415, 424 �2002�.

IMPACT OF FRAUD ON THE MEAN-FIELD DYNAMICS OF… PHYSICAL REVIEW E 76, 026114 �2007�

026114-7



�44� P. D. Taylor and L. Jonker, Math. Biosci. 40, 145 �1978�.
�45� J. Hofbauer and K. Sigmund, Evolutionary Games and Popu-

lation Dynamics �Cambridge University Press, Cambridge,
UK, 1998�.

�46� D. Helbing, Physica A 193, 241 �1993�.
�47� D. Helbing, Physica A 196, 546 �1993�.
�48� A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett.

95, 238701 �2005�.
�49� A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. E 74,

011901 �2006�.
�50� M. A. Nowak and K. Sigmund, J. Theor. Biol. 194, 561

�1998�.
�51� D. Semmann, H. J. Krambeck, and M. Milinski, Nature �Lon-

don� 425, 390 �2003�.
�52� L. A. Imhof, D. Fudenberg, and M. A. Nowak, Proc. Natl.

Acad. Sci. U.S.A. 102, 10797 �2005�.
�53� C. Hauert, A. Traulsen, H. Brandt, M. A. Nowak, and K. Sig-

mund, Science 316, 1905 �2007�.
�54� A. Traulsen and M. A. Nowak, PLOS One 2, e270 �2007�.
�55� G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901�R�

�2001�.
�56� P. Holme, A. Trusina, B. J. Kim, and P. Minnhagen, Phys. Rev.

E 68, 030901�R� �2003�.
�57� H. Ebel and S. Bornholdt, Phys. Rev. E 66, 056118 �2002�.
�58� F. C. Santos, J. F. Rodrigues, and J. M. Pacheco, Proc. R. Soc.

London, Ser. B 273, 51 �2006�.
�59� F. C. Santos and J. M. Pacheco, J. Evol. Biol. 19, 726 �2006�.
�60� F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad.

Sci. U.S.A. 103, 3490 �2006�.
�61� H. Ohtsuki, M. A. Nowak, and J. M. Pacheco, Phys. Rev. Lett.

98, 108106 �2007�.
�62� H. Ohtsuki, J. Pacheco, and M. A. Nowak, J. Theor. Biol. 246,

681 �2007�.
�63� B. Skyrms and R. Pemantle, Proc. Natl. Acad. Sci. U.S.A. 97,

9340 �2000�.
�64� J. Davidsen, H. Ebel, and S. Bornholdt, Phys. Rev. Lett. 88,

128701 �2002�.
�65� M. G. Zimmermann and V. M. Eguíluz, Phys. Rev. E 72,

056118 �2005�.
�66� P. Holme and G. Ghoshal, Phys. Rev. Lett. 96, 098701 �2006�.
�67� J. M. Pacheco, A. Traulsen, and M. A. Nowak, Phys. Rev. Lett.

97, 258103 �2006�.
�68� F. C. Santos, J. M. Pacheco, and T. Lenaerts, PLOS Comput.

Biol. 2, 1284 �2006�.

RÖHL et al. PHYSICAL REVIEW E 76, 026114 �2007�

026114-8


